On Pointwise Adaptive Nonparametric Deconvolution
نویسندگان
چکیده
منابع مشابه
On pointwise adaptive nonparametric deconvolution
We consider estimating an unknown function f from indirect white noise observations with particular emphasis on the problem of nonparametric deconvolution. Non-parametric estimators that can adapt to unknown smoothness of f are developed. The adaptive estimators are speciied under two sets of assumptions on the kernel of the convolution transform. In particular, kernels having the Fourier trans...
متن کاملDeconvolution in nonparametric statistics
In this tutorial paper we give an overview of deconvolution problems in nonparametric statistics. First, we consider the problem of density estimation given a contaminated sample. We illustrate that the classical Rosenblatt-Parzen kernel density estimator is unable to capture the full shape of the density while the presented method experiences almost no problems. Second, we use the previous est...
متن کاملPointwise deconvolution with unknown error distribution
This note presents rates of convergence for the pointwise mean squared error in the deconvolution problem with estimated characteristic function of the errors. Résumé Déconvolution ponctuelle avec distribution de l’erreur inconnue. Cette note présente les vitesses de convergence pour le risque quadratique ponctuel dans le problème de déconvolution avec fonction caractéristique des erreurs estimée.
متن کاملNonparametric deconvolution for decreasing kernels
A selection of these reports is available in PostScript form at the Faculty's anonymous ftp-Abstract A new nonparametric estimation procedure is introduced for a class of deconvolution problems where the convolution kernel is decreasing on 0; 1). The estimator is shown to be consistent and its cube root asymptotic distribution theory is established.
متن کاملFrom Local Polynomial Approximation to Pointwise Shape-adaptive Transforms: an Evolutionary Nonparametric Regression Perspective
In this paper we review and discuss some of the theoretical and practical aspects, the problems, and the considerations that pushed our research from the one-dimensional LPA-ICI (local polynomial approximation interesection of conÞdence intervals) algorithm [27] to the development of powerful transform-based methods for anisotropic image processing [18, 15, 19, 20, 8, 21]. In this paper we do n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 1999
ISSN: 1350-7265
DOI: 10.2307/3318449